Demonstrating a Secure, Reliable, Low-Carbon Community Microgrid

at the Blue Lake Rancheria

Microgrid Workshop, September 6, 2016 California Energy Commission, Sacramento, CA Electric Program Investment Charge Award No. EPC-14-054

Outline

- Background
- Project Description
- Project Implementation
- Project Status
- Evaluation Metrics & Project Benefits
- Lessons Learned

Location

Background

- Natural disaster prone region
- Energy resiliency important
- Regional hazard mitigation planning
- American Red Cross critical support facility
- Experienced, committed local project partners

Background

BLR Load Profile

Blue Lake Rancheria

Idaho National Laboratory

GHD

Robert Colburn Electric

Kernen Construction

Microgrid Design

Microgrid Design - Simplified Schematic

Area Electric Power System (AEPS) ----- PG&E Distribution Grid 12.5kV Weather Station and Forecast (WSF) Circuit Point of Common Relay Breaker **Battery Energy** Photovoltaic (PCCR) Coupling (PCC) (PCCCB) System (PV) System (BESS) Human Machine Interface (HMI) BLR Microgrid (BLRMG) 480 V 12.5kV Transformers Transformers Siemens Remote I/O 480 V Microgrid Casino Main Switch Board Module 480 V 480 V Management System (MGMS) Automatic В Automatic В MW **Transfer Switch Transfer Switch** (ATS1) Gen (ATS2) Johnsons Controls Inc. **Tribal Office** Hotel Energy Loads Loads Management System Casino Controllable All Other (EMS) **Generation Sources** Loads Casino Loads **Control Devices and Signals Electrical Loads Electrical Lines**

PV Array

Battery

PCC Switchgear

- Collaborative Design-Build Approach
- Integrated Design Plan Set
- Concept of Operations Document

50%, 90%, 95%

Revision History

ON ORIGINAL DRAWING		
01"		
	SCHATZ	
5		
	ENERGY	Г
5.7	RESEARCH	
		H
	CENTER	l

BAR IS ONE INCH

		SHICHUI	7 L	-
			-	ı
9	07/05/2016	95% SUBMITTAL	↓	
8	06/09/2016	REVISED TESLA CONNECTIONS		I
7	05/31/2016	REVISED PER 90% COMMENTS		l
6	05/08/2016	90% SUBMITTAL		l
5	12/31/2015	50% SUBMITTAL		-
4	12/18/2015	REVISED DESIGN	3	&
3	11/12/2015	REVISED PER DESIGN MEETING	†	_
REV	DATE	DESCRIPTION		l
			\Box	l

Controls Integration

BLR Microgrid Data Flow Diagram:

Revision: 01.2

Revision Date: 5/10/2016

Revision Notes:

Added connection from weather

repository to internet

UNDERGROUND FEEDER

UG12KV11SE

Construction Observation and Support

Construction Observation and Support

Microgrid Value & Metrics

- Provide back-up power for a nationally recognized Red Cross disaster shelter
- Reduce energy costs (energy and demand charges)
- Provide demand response capabilities
- Increase the use of local renewable energy sources and reduce GHG emissions
- Provide greater energy security by reducing impacts of energy price volatility and improving energy reliability
- Reduce stresses on the local utility grid via peak shaving and demand response capability
- Project benefits (customer, utility/rate payer, society) will be measured and evaluated

Lessons Learned

- Microgrids are cutting edge technology hardware and software solutions from leading companies are not yet "off-the-shelf." This can make design work and system integration across multiple vendors challenging.
- Integrating communication protocols & interfaces between components is complicated.
- Standardization and an integrated system approach could eliminate redundancy across multiple controllers and provide cost savings.
- Microgrid inverters must have hybrid capabilities. Need grid-connected antiislanding protection as well as ability to disable anti-islanding feature when in island mode. There is limited availability of hybrid inverters designed for microgrid applications.
- Microgrid stability is a challenge in a low inertia environment.
- Paralleling an isochronous generator with other generators on the microgrid is challenging.
- Interconnecting parallel generation
 ≥ 1-MW requires a telemetering SCADA switch; this adds substantial cost.
- Navigating/coordinating the interconnection process with multiple vendors, contractors and PG&E is challenging.

Thank you

